
Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Regex for people who
should know Regex,
but do not. PART 2

written by dbr/Ben
http://neverfear.org

http://neverfear.org
http://neverfear.org

Table of Contents

Practical examples
Validating form input! 3

- What users want.! 4
- What evil people want: SQL injections! 4
- What evil people want 2: Cross-Site-Scripting Attacks! 5

- Back to the name validation! 6
- Done yet?! 6

- Lets leave it at that..! 7
Extracting text from a string! 8

- Greedy Regexs! 8
- Groups! 9

Regex in Languages
Perl! 11

- Simple matching! 11
- Substitution! 11

- Extraction! 11
Ruby! 12

- Simple matching! 12
- Substitution! 12

- Extraction! 12
Python! 13

- Simple matching! 13
- Substitution! 13

- Extraction! 13
PHP ! 14

- Simple matching! 14
- Substitution! 14

- Extraction! 14
Javascript! 15

- Simple matching! 15
- Substitution! 15

- Extraction! 15

Fineto
Links! 16

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Part 2
This is the second part of the catchily named Regex-for-people-who-should-know-regex-
but-do-not guide. If you are unfamiliar with the basics of regular expression syntax, then I
recommend you first read part 1, or any of the many regular expressions primers available
online.

In this part of the guide, I am first going to cover practical examples of regular expressions,
such as how to extract a segment of text from a string, and how to validate user-input.
Finally, I am going to cover how to use regex within various languages; how to do regex
matching, extraction and substitution within Perl, Ruby, Python, PHP and Javascript.

These examples are going to mainly focus on processing HTML, but remember, HTML is
just specifically formatted text. As I keep saying, regular expressions are very flexible -
what you learn in this guide can be applied to a myriad of things - from editing files to data-
mining, input validation to finding files.
If you are dealing with text (be it code, HTML, file names), chances are regex can help you
in some way.

If you donʼt understand a bit of the article, donʼt worry - just read past and come back to it
later. Learning regular-expressions is just like learning a new language, you start of
learning some basics, then learn some more advanced bits. As you learn more advanced
bits, the simple bits make more sense. As with all languages, the more you use them, the
more familiar you become - think up some projects that could use regular expressions, and
get coding.

Practical examples
To actually see why regular expressions are so useful, you really have to have a reason to
use them. Since regexs are so flexible, there are many different ways they can be used.
Iʼm going to cover what I use them for most: validating input, cleaning up input, and
extracting segments from a string.

Validating form input
This can be a rather complicated matter - “k” in the comments on the previous article
corrected pointed out that there was far more to validating an email than just

! \w+@\w+\.\w+

Look at the full regular expression to validate an email: http://www.ex-parrot.com/~pdw/
Mail-RFC822-Address.html - and even that isnʼt perfect!

Depending on what you want or need, validation can be very complicated, but since we
have to start somewhere, weʼll start with something simple - a name field on a web form.

For this example, we are only going to deal with “Western” names - we wonʼt worry about
dealing with Japanese glyphs and other scary-looking-Foreign characters.

First, we need to think what users might want to enter in this field. Secondly we need to
think what evil shifty-eyed people might like to put in to break the site.

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

What users want.
Most usernames contain letters (upper and lower case), numbers, hyphens and
underscores. If that was all we wanted, we could get away with the following regex:

! [\w-]+
If you remember from the previous guide, \w is a shortcut for alphanumeric plus
underscores. Since we want hyphens too, we added that to the character class.
If we donʼt trust shortcuts, we could have written it with ranges instead:

! [a-zA-Z0-9_-]+

I tend to use the latter style - I find it easier to know what Iʼm matching. \w isnʼt terribly
memorable. Itʼs a little more verbose, and I never trusted all languages to have the same
shortcuts, so I have stuck to using ranges of characters.
When you first write a regex to validate input, you have to start thinking of all validate input
it could invalidate. The first thing that springs to mind is spaces. In the comments on the
previous article, quite a few people used “Firstname Lastname” - perfectly valid input, but
wouldnʼt pass the previous regex. Easily fixed, just add a space to the character-class:

! [a-zA-Z0-9\-_\]+

I have used an escaped-space instead of \s because I donʼt want to allow tabs. Also, some
regex implementations donʼt require you to escape the space, others do. For example,
Python regex compiled with the re.VERBOSE flag will ignore whitespace and line-breaks;
if you want to match a space, you either escape the space, or use \s. Personally, I escape
spaces them most of the time (since it works whether it ignores spaces or not), and I find it
easier to spot where I want to match spaces.
Also, as the - has meaning within character classes, it must be escaped or placed last.

Great, now we have a regex we can validate user input.. But not until we consider what
evil people might put in to the field to break things..

What evil people want: SQL injections
There are two big problems when it comes to user-submitted data, which is going to be
displayed on the site, SQL injections and Cross-site scripting attacks (XSS).

SQL injections are basically badly validated user-input being append to an SQL query. I
wonʼt go into much detail about them here. The main cause of these are un-escaped
quotes in user-input. For example, here is a simple SQL query:

! SELECT user_id FROM Students WHERE username=’Robort’

Now, bob is what the user entered - but what if a user entered the following as a
username:

! Robort'); DROP TABLE Students;--

Bad things happen, if you donʼt validate their input.. The query turns into the following two
queries:

! SELECT user_id FROM Students WHERE username=’Robort'); DROP
TABLE Students;--’

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

If youʼre not familiar with SQL, basically that went from retrieving the ID of a supplied
username, to retrieving the username and deleting every single student record.

For more information, see the Wikipedia page on SQL injections: http://en.wikipedia.org/
wiki/SQL_injection

So, how do we prevent this?
In the case of out name-field weʼve prevented this by not allowing quotes, brackets or
semicolons to every make it near the SQL query.
What if we did need these symbols in the field? For example, quote marks are perfectly
valid in a commentʼs text - I just used one as an apostrophe.
We simply escape the quotes, by putting a backslash before them:

! quote marks are perfectly valid in a comment\’s text

Most languages will have built in commands to escape quotes and such, and some
database interfaces have this too - but what if our language doesnʼt have such a command
or feature? Regex can do that!

! s/’/\\’/g

Looks rather horrible, but thatʼs the syntax for a regex-substitution in Perl.
The ʻsʼ says itʼs a substitution, then, between the first and second forward-slash is the
pattern to look for, and between the second and last forward-slash is what to replace it
with.
In this case, we look for a single quote, and replace it with backslash followed by a single
quote. We need two backslashes, a single backslash would escape the next character, two
gives a literal backslash.
Finally, the ʻgʼ is a modifier, that tells the regex to be applier to every occurrence of the
quote, not just the first.
If you use the above regex, you must first escape entered backslashes (\), then single
quotes (ʻ), double quotes (“) and backticks (`). Be very careful and test thoroughly!

What evil people want 2: Cross-Site-Scripting Attacks
The second big problem is cross-site-scripting attacks. An XSS attack is injecting extra
HTML onto a page.
These attacks can range from slightly annoying (a Javascript alert saying “hah”), to having
users accounts compromised.

Typically these are Javascript <script></script> tag containing some code to take the users
authentication cookie, and send it to the attacker - allowing them to log in as the user.
There was a big XSS attack on Myspace, which acted as a worm - when someone viewed
an “infected” profile page, it would submit a friend-request to itʼs creator, then add the
XSS-code to the users profile. It ended up on over a million users profiles, all because the
sites creators accidently allowed Javascript to be entered in one small part of the users
profile! Read more about it on the creators website: http://namb.la/popular/

The problem is allowing angle-brackets (< and >), then displaying them back on the page
without converting them to < and >

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://namb.la/popular/
http://namb.la/popular/

If you donʼt this, they get interpreted as regular HTML. Using CSS, you can “deface” a
website by creating a div, and making it float above the website. Using javascript you can
redirect to another website, or steal the users cookie that automatically logs them in.

As with SQL injections, most languages have functions to escape HTML entities, or
alternatively you can achieve this with regular expressions:

! s/</</g
! s/>/>/g

If you want to read more on XSS attacks, see the Wikipedia page: http://en.wikipedia.org/
wiki/Cross-site_scripting
Back to the name validation
So we know users cannot inject SQL into our query, as we are not allowing quotes in the
input. Same with XSS injections, we are not allowing any characters that could be used to
inject any extra HTML.

There is one last problem that might come up - input length.
Typically in your database, you have a VARCHAR row named “username” or similar,
limited to around 30 characters. If the user inputs a 100 character name, it will get input
happily, but it will be truncated with no warning.

A 100 character name will be happily (and wrongly) be validated by our regex:

[a-zA-Z0-9-_\]+

Remember, that plus symbol means one or more characters from this set of characters.
That means we can have a million letter aʼs and will validate.
We need to only allow one to thirty characters - the {1,30} quantifier seems perfect for this.

[a-zA-Z0-9-_\]{1,30}

It now reads: 1-to-30 characters from this set. It will not validate if there are invalid
characters, or if it is blank or too long.

Done yet?

We now have a fairly issue-free regular expression to validate the input from a “Your
name” field on a web-form or other input, but there are still issues.
A user could simply enter a single space, and it will be valid. This is not a desirable action.

The best way to fix this would be to trim trailing spaces from the input, then run it through
our regex. As with escaping quotes and HTML, many languages have such a trim()
function, and again, we can do this in regular expressions:

! s/\s+$//

Substitute one or more spaces directly before the end of the string.

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting

The dollar sign ($) means the end of the string, and the carat (^). To match the word “hi”
at the start of a string only, you would do:

! ^hi

And at the end of a string:

! hi$

And you can combine the two, for example to match only the word hi, with nothing else in
the string:

! ^hi$

To match a sentence, starting with the word hi, and ending in bye:

! ^hi.*bye$

Those two symbols are very useful, and I really should have mentioned them earlier!
So now if a user enters only spaces, they are all stripped away, making the input 0
characters long, so are invalidated by {1,30}

So.. weʼre done? Iʼm afraid not! What if a user types ʻa bʼ, thatʼs valid, itʼs within [a-z\]
{1,30}. Again, we deal with this the same way as the only-spaces problem: strip more than
one space in a row, then run it though our main regex:

! s/\s{2,}/ /

This replaces two or more spaces with a single space.

Lets leave it at that..
As you can probably see, validation can get very complicated. Even a seemingly simple
thing can have problems - either invalidating otherwise valid input, or allowing malicious
data to be entered.
Generally, itʼs best to err on the side of caution and limit the character set to a-zA-Z0-9,
rather than accidently allowing the user to input extra commands or code into your site.

Make sure you let users know what restrictions there are on inputs (For example,
“Usernames must contain only upper or lower case letters, numbers, underscores and
hyphens”), and instead of simply saying “Your form was filled in invalidly”, remember to let
users know what they did wrong (highlight the invalid field, remind them of the allowed
characters)

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Extracting text from a string
This is something I use constantly. Say you have a HTML file, and you wish to get all the
URLs within the file. Without using regular expressions, you are stuck using a horrible
temperamental mess of strpos(), substr() and such commands. With regular expressions,
you can find all images in a single expression.

! <img.*? src=”(.+?)”.*?>

Then you use your languages regex match-all function, and you will be presented with an
array of all images.

Hopefully by this point you can work out what most of that regex does. First we look for the
string <img, then look for the src=”” attribute, grabbing the contents of it using a group (the
match within the brackets), then we look for the closing tag.

Greedy Regexs
This is a good time to explain greedy/non-greedy matching. Greedy matching would be to
simply do

! <img.* src=”.+”.*>

While this might work work, it can behave very strangely when there are multiple double-
quotes, or multiple tags.
Trying to match <.*> will find the first angle-bracket, and then the last one - this is greedy
matching. While this behavior is sometimes desired, other times it can make the regex act
strangely.
What we want it to do is find the next closing-angle-bracket, so we use non-greedy
matching:

! <.*?>

The question mark after a quantifier indicates non-greedy matching:

! .*?
! .+?
! .{1,4}?

There is another other way to do achieve non-greedy matching:

! < [^>]+ >

That looks for <, then one or more characters that are not >, and finally the >
For matching things like HTML tags, it is more reliable, and you donʼt have to worry about
greedy/non-greedy quantifiers.

So, our img-src grabbing regex updated to use the [^>]+ syntax

! <img.*? src=”([^”]+)”[^>]+>

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Like all regular expressions, this one has a problem - HTML can use either single or
double quotes. We can use the alternation symbol, the vertical pipe (|), which you will be
familiar with as the boolean OR in many programming languages.

As a simple demonstration of alternation, I want to be able to match the word hi, or bye,
followed by an exclamation mark or a question mark:

! (hi|bye)[!?]{1}

That matches hi OR bye, followed by one character from a set of [!?]. It could be written
using an alternation for the ! and ?, but to match a single character, itʼs far neater to use a
character class and match one symbol (we canʼt use the ? as it matches “zero or one”).
You donʼt need to escape the ? within a character class, as it has no meaning there. Were
we to use alternation, it would require escaping.

To update our img-src grabbing regex to allow both single and double quotes

! <img.*? src=[“‘]{1}([^”’]+)[”’]{1}[^>]+>

Iʼm aware that looks horrible, but it was easy for me to write. You donʼt write a regular
expression in a single go - you start with a basic match, and refine it as you notice
problems. This is why reading or editing other users regular expressions is so difficult.

Groups
Now, somewhere amidst that line-noise is a group - a match enclosed in brackets. For the
sake of readability, Iʼll revert back to the simpler looking regex (before we dealt with the
single/double quote issue)

! src=”(.+?)”

This matches src=”, then stores everything that matches .+ until the next “

This is best explained via an example:

! Input:!
! Regex:!
! Group 1: !test.png
! Group 2:! Test picture

Iʼm not even going to get into the problems with that regular expression! I will explain how
to grab those groups in various languages in the next section, Iʼve just one thing to
explain, back-references.

Back-references are one of the things I put off learning because they sounded scary - but
just like regular expressions, they are easier than they seem. Simply, you can use group-
matches within the same regular expression. To be honest, you wonʼt use these too often.
The only reason Iʼve used them was to match HTML tags:

! <(.+?)>.+?</\1>

Not the scariest looking regex. That finds the first <tag>, storing “tag” in group 1. Then
looks for </ group-1 > (in this case it would be </tag>)

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Regex in Languages
Now, the bit youʼve possibly been waiting for - how to use simple regular expressions in
various languages.

In these examples, we will start by storing a string in a variable, then we will apply the
regular expression. For matching, we will display a message if it was successful, for
substitutions we will display the modified variable, and for extraction we and display the
groups.

These examples will use a simple non-greedy match (For example: /st.+?g/), but we could
use the more complicated character-classes, back-references, or anything else we have
discussed previously.

Also, in many languages, to improve readability, you can use symbols other than a
forward-slash to indicate start/end of a regex - you can use various characters, for
example:

! $strings=~s#'#\\'#g
! $strings=~s^'^\\'^g

Many, many languages have built-in regex capabilities, thereʼs no way I can cover them
all, so I will focus on a few languages I consider “the biggest” for readers of an article like
this. As I have said previously, the Perl regular-expressions syntax is the most common,
but there are variations - as always, check that languages documentation, or have a look
around for tutorials and guides.

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Perl
Since we are using Perl Compatible Regexs, Perl seems like a sensible place to start.

Simple matching

my $string = “Test string!”;
if($string=~/st.+?g/){
! print “Match”;
}

Substitution

my $string = “Test string!”;
$string=~s/st.+?g/replacement/;

print ($string);

Extraction

Using default variables:

my $string = "";
$string=~/<img src='([^']+)' alt='([^']+)'/;

print ($1 . "\n");
print ($2 . "\n");

Storing groups to named variables:

my $string = "";
my ($match_one,$match_two) = $string=~/<img src='([^']+)'
alt='([^']+)'/;

print ($match_one . "\n");
print ($match_two . "\n");

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Ruby
Ruby regex handling is very similar to Perl. I donʼt have much experience with Ruby, so
there may be better ways of doing this - these examples work, and should be enough to
get you started. If you want to learn more about Ruby regex, I recommend reading the
Ruby documentation, or the many online tutorials.

Simple matching

string = “Test string!”;
if string =~ /st.+?g!/
 puts “Match”
end

Substitution

string = “Test string!”
string = string.gsub /st.+?g/, “replacement”

puts string

Extraction

Using default variables:

string = ""
string.scan //

puts $1
puts $2

Storing groups to named variables:

string = ""
match_1,match_2 = //.match
(string).to_a

puts match_1
puts match_2

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Python
Regex in python is a module called “re”. There are several different regular expression
functions, some more suitable to certain situations. For example, match() will match the
pattern from the start of the string, whereas search() will match anywhere in the string.

Simple matching

import re
string = "Test string!"
if re.search("st.+?g", string):
! print "Match"

Substitution

import re
string = "Test string!"
string = re.sub("st.+?g", "replacement", string)

print string

Extraction

Using default variables:

import re
string = ""
results = re.search("", string)

print results.group(1)
print results.group(2)

Storing groups to named variables:

import re
string = ""
match_1, match_2 = re.search("",
string).groups()

print match_1
print match_2

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

PHP
Regex in PHP is a little different to the other languages, being similar in syntax to C. The
functions start with preg_, which stands for Perl Reg(ular expressions), so obviously it
uses Perl-compatible regexs.

Simple matching

<?
$string = “Test string!”;
if(preg_match(“/st.+?g/”, $string)){
! echo(“Match”);
}
?>

Substitution

<?
$string = “Test string!”;
$string = preg_replace(“ st.+?g”,”replacement”, $string);

echo($string);
?>

Extraction

PHP is a little different to the other languages - in the third argument, you supply a variable
which receives the results.

<?
$string = "";
preg_match_all("//", $string,
$results);

echo($results[1][0] . "\n");
echo($results[1][0] . "\n");
?>

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Javascript

Simple matching

string = "Test string!";
if(string.match(/st.+?g/)){
! alert("Match");
}

Substitution

string = "Test string!";
string = string.replace(/st.+?g/, "replacement");
alert(string);

Extraction

string = "";
string.search(//);

alert(RegExp.$1);
alert(RegExp.$2);

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

Fineto
Weʼve covered some practical examples, and gone over a bit more regular expression
syntax, then explained how to do the basic regular expression stuff in a range of
programming languages.
Even though this guide is over 3000 words, I have only covered a small percentage of
what you can do with regular expressions - but I hope this has helped make the regex
syntax look a bit less like line-noise to you.

One final tip: Many times Iʼve had a regular expression that didnʼt work for some reason.
Since regexs are so difficult to read, and the order of characters is so important - a missing
character or two in the wrong order can completely break a match, and mistakes can be
very hard to spot.
More often that not, it is easier just to rewrite the expression than to spend hours trying to
debug them.

If you notice any problems in the guide, or you have any tips or advice, leave a comment!

If you like this guide, Digg the story, submit it to Del.icio.us, upmod it on Reddit, send the
link to your friends, and subscribe to the RSS feed!

Links
RSS feed:
http://neverfear.org/rss-full.rss
The article on neverfear.org:
http://neverfear.org/blog/view/
Regex_tutorial_for_people_who_should_know_Regex__but_do_not___Part_2/

Regex for People who should know Regex but do not.. Part 2! neverfear.org

VERSION 2 2008-02-18! written by dbr/Ben

http://neverfear.org/rss-full.rss
http://neverfear.org/rss-full.rss
http://neverfear.org/rss-full.rss
http://neverfear.org/rss-full.rss
http://neverfear.org/blog/view/Regex_tutorial_for_people_who_should_know_Regex__but_do_not___Part_2/
http://neverfear.org/blog/view/Regex_tutorial_for_people_who_should_know_Regex__but_do_not___Part_2/
http://neverfear.org/blog/view/Regex_tutorial_for_people_who_should_know_Regex__but_do_not___Part_2/
http://neverfear.org/blog/view/Regex_tutorial_for_people_who_should_know_Regex__but_do_not___Part_2/

